Frank Bokeloh

Title: Development of organic microelectromechanical chemosensors based on fiber optics.

Author: Frank Bokeloh

Date: 2017

National thesis number: 2017COMP2381

Abstract

  • A classical (bio)sensor consists of two key components: A receptor layer that detects the analyte of interest and the transducer which converts the chemical / biological stimuli into a physical measurable signal. Ideally a sensor is label-free, highly sensitive and selective towards the target, requires low sample amount and shows a fast response time. Regarding these criteria microelectromechanical systems (MEMS) offer great potential for the sensor development. One interesting approach for this development are functional polymer materials, such as molecularly imprinted polymers (MIPs), that can be either integrated to existing MEMS based on silicon or completely replace the silicon technology. The emphasis of this thesis is focused on the development of a MEMS sensor based on (functional) polymers. In an initial chapter (chapter 2) new fabrication schemes for functional polymers are introduced. Inkjet-printed biochips based on MIPs are presented and a technique based on controlled radical polymerization is shown that allows the deposition of thin MIP shells on a microfabricated pattern. In the second part of this chapter the fabrication of molecularly imprinted polymers by two-photon stereolithography is shown which can be seen as an extension of 3dimensional printing. As possible application of this rapid prototyping technology two sensors based on MIPs are introduced a diffraction grating sensor and a microcantilever sensor. The two main chapters of this manuscript (chapter 3 and chapter 4) report the development of a new fabrication concept for MEMS sensors. It is based on the polymerization of a high aspect ratio beam on the extremity of an optical telecommunication fiber which was actuated at resonance and thus could be used as a cantilever sensor. The polymer sensor allowed the integration of MIPs as sensing element and the selective recognition of the antibiotic enrofloxacin. Furthermore, is a new, integrated read-out scheme presented in chapter 4. This read-out scheme integrates the optical fiber, by guiding a probe laser beam through it and attached cantilever beam. The output light beam is then focused on a position sensitive photodiode and thus enabled to monitor the resonance spectra of the polymer beam. The read-out scheme is characterized and its performance is shown by demonstrating the mass sensitivity of the polymeric cantilever beam and by measurements in liquid environments

Link: 2017COMP2381

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée.